Indian Statistical Institute, Bangalore

B. Math.

First Year, Second Semester
Linear Algebra-II

Mid-term Examination I
Maximum marks: 100

Date : 24 February 2023
Time: 10.00AM-1.00PM
Instructor: B V Rajarama Bhat
(1) Fix a natural number n and a real number b. Let $B=\left[b_{i j}\right]_{1 \leq i, j \leq n}$ be the matrix with $b_{i, j}=b^{i+j}$. Compute the determinant of B. Compute the rank of B. Compute the characteristic polynomial of B.
(2) Compute the inverse of

$$
P=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \tag{15}\\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 2 \\
1 & 0 & 2 & 5
\end{array}\right]
$$

in two different ways by considering it as composed of block matrices of sizes 2×2, 2×2 or 3×3 and 1×1 on the diagonal and using the formulae for inverses of block matrices.
(3) Fix a natural number n and let $\sigma:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$ be a permutation. Let P be the associated permutation matrix defined by

$$
P_{i j}= \begin{cases}1 & \text { if } i=\sigma(j) \\ 0 & \text { otherwise } .\end{cases}
$$

Show that the inverse of P is same as the transpose of P. Compute the determinant of P.
(4) State and prove Cauchy-Schwarz inequality for inner product spaces. [15]
(5) Consider \mathbb{R}^{3} with standard inner product. Suppose $M: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is the linear map defined by

$$
M\left(\begin{array}{l}
x_{1} \tag{15}\\
x_{2} \\
x_{3}
\end{array}\right)=2 x_{1}+x_{2}+x_{3} .
$$

Let K be the kernel of M. Obtain an orthonormal basis for K.
(6) Let V be a finite dimensional inner product space and let W be a subspace of V. Let P be the projection onto W. Show that (i) $\|P x\| \leq\|x\|$, for all $x \in V$. (ii) $\|P x\|=\|x\|$ if and only if $x \in W$.
(7) Let $q(x)=b_{0}+b_{1} x+\cdots+b_{k} x^{k}$ be a polynomial. If A is a matrix, $q(A)$ is defined as $b_{0} I+b_{1} A+b_{2} A^{2}+\cdots+b_{k} A^{k}$. (i) Suppose R is an upper triangular complex matrix with diagonal entries $a_{1}, a_{2}, \ldots, a_{n}$. Show that the diagonal entries of $q(R)$ are $q\left(a_{1}\right), q\left(a_{2}\right), \ldots, q\left(a_{n}\right)$. (ii) Let A be an $n \times n$ complex matrix with characteristic polynomial

$$
p_{A}(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{n}\right)
$$

Show that the characteristic polynomial of $B:=q(A)$ is given by

$$
p_{B}(x)=\left(x-q\left(a_{1}\right)\right)\left(x-q\left(a_{2}\right)\right) \cdots\left(x-q\left(a_{n}\right)\right)
$$

